apakah mendownload mod apk di google berbahaya bagi ponsel kita ??
1. apakah mendownload mod apk di google berbahaya bagi ponsel kita ??
Jawaban:
ada yg berbahaya namun jga ada yg tidak.
contoh yg berbahaya = yaitu aplikasi yg tidak mendapatkan izin dari ponsel anda.
Penjelasan:
sekian terima kasih
2. jika kita download game dari happy mod apakah jika kita melakukan pembaruan di playstore progres kita akan hilang?
Jawaban:
kemungkinan dak bisa di updet kalau apk mood di updet di playstore dak bisa jadi ya kalau mau versi baru harus di mood
Penjelasan:
oiya saran jangan updet android berwpa lah tu sebaik nya jangan memaksakan semoga membantu hihihi
3. gimana caranya download aplikasi Happy Mall Story Mod di freehotfilesz.blogspot.com
Untuk mendownload di situs tersebut caranya :
1. Klik "Begin Download"
2. Pilih Survey dan lengkapi datanya
3. Tunggu 1-2 menit, file akan muncul jika data sudah terlengkapi
Saran sy mending cari alternatif yang lain karena di situs ini berisi permintaan data yang akan masuk ke email kita seperti iklan dll.
Jika jawaban cukup membantu ... boleh dong jadikan jawaban terbaik ?
4. mutasi kata dari :" parvati "# mod Terbaik, btw asal, lapor ke mod tersebut..... ✌️✌️✌️✌️
" parvati "
p = 1
a = 2
r = 1
v = 1
t = 1
i = 1
Total Unsur = 7
Total Ganda = 2
Banyak Susunan := 7!/2!
= 5.040/2
= 2.520 Susunan kata
Penjelasan dengan langkah-langkah:
[tex]{{ \pink{ { {\boxed{ { \blue{\boxed{{ \red{ \boxed{ { \green{\boxed{ \tt{ { \pink{2.520\:Susunan\:Kata }}}}}}}}}}}}}}}}}}[/tex]
Permutasi adalah Penyusunan kembali suatu kata dalam urutan yang berbeda
Rumus yang biasa pada Permutasi ;yang memiliki unsur Ganda ;
[tex]\boxed{\frac{ \tt \: n!}{ \tt \: k! }} \\ [/tex]yang tidak memiliki unsur Ganda
[tex] \boxed{ \tt \: n!}[/tex]- ParvatiP = 1a = 2r = 1v = 1t = 1i = 1__,__ +Jumlah Huruf ; 7!Unsur Ganda ; 2! (a)Permutasi = 7!/2!
Permutasi = (7 × 6 × 5 × 4 × 3 × 2 × 1)/(2 × 1)
Permutasi = 5.040/2
Permutasi = 2.520 Susunan Kata
[tex]\huge \tt{ \color{lightpink}D}{ \color{lightblue}e}{ \color{lightpink}t}{ \color{lightblue}a}{ \color{lightpink}i}{ \color{lightblue}l} \: \: { \color{lightpink}J}{ \color{lightblue}a}{ \color{lightpink}w}{ \color{lightblue}a}{ \color{lightpink}b}{ \color{lightblue}a} { \color{lightpink}n}[/tex]
Mata Pelajaran ; MatematikaMateri ; Bab 7 - Kaidah PencacahanKelas ; 12-SMAKode Soal ; 2Kode Kategorisasi ; 12.2.7Kata Kunci ; Permutasi Kata parvati5. Quizz [25+]banyak susunan dari kata ☆MOD☆☆YAYA☆☆MOD☆☆BOBOBOI☆
Jawaban:
Mod:6
Yaya:6
Mod:6
Boboboi:560
Penjelasan dengan langkah-langkah:
MOD!
HURUF:3
GANDA:-
P!:3.2.1=6
YAYA!
HURUF:4
GANDA:2,2
P!:4.3.2.1=24,2.1=2,2.1=2
P!:24/4
P!:6
MOD!
HURUF:3
GANDA:-
P!:3.2.1=6
BOBOBOI!
HURUF:7
GANDA:3,3
P!:7.6.5.4.3.2.1=5,040,3.1=3,3.1=3
P!:5.040/9
P!:560
Salah Bilang Jan Langsung Report!
Jawaban:
Mod
m=1
o=1
d=1
total huruf 3
3!=3x2x1=6 Susunan
Yaya
y=2
a=2
total huruf 4
unsur ganda 2.2
4!=4x3x2x1=24
(2x2)=4
24/4=6 Susunan
Mod
m=1
o=1
d=1
total huruf 3
3!=3x2x1=6 Susunan
boboboi
b=3
o=3
i=1
total huruf 7
unsur ganda 3.3
7!=7x6x5x4x3x2x1=5.040
3!=3x2x1=6 3!=3x2x1=6 x 6=36
5.040/36=140 Susunan
6. operasi a mod b berarti sisa ketika a dibagi dengan b. contohnya 5 mod 3 = 2.berapakah 353653664176826832176826834 mod 13
353653664176826832176826834 mod 13 = 2
7. ada yang tau nggak alamatnya games EURO TRUCK SIMULATOR yang terbaru dan mod"nya saya mau download tapi gag tau alamatnya.. tolong ya yang tau
Coba cari di Steam bro. Stop membajak hak cipta orang lain :)
8. Q. 11!Note : Mod oh mod dimanakah engkhau
Cara Jawaban =
1..)
11! = 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 .
11! = 39.916.800.
Semoga membantu
Jawaban:
11x10x9x8x7x6x5x4x3x2x1=39.916.800
Penjelasan dengan langkah-langkah:
(11x10)x(9x8)x(7x6)x(5x4)x(3x2)x1=(110x72)x(42x20)x(6x1)=(7.920x840)x6=(6.652.800x6)=39.916.800by alwiandikaa26
semoga dapat membantu
9. Keragaman suku sunda Cepat gua kasih tips cara download free fire mod
Jawaban:
Budaya Sunda adalah budaya yang tumbuh dan hidup dalam masyarakat Sunda. ... Pada umumnya karakter masyarakat Sunda adalah periang, ramah-tamah (soméah, seperti dalam falsafah soméah hadé ka sémah), murah senyum, lemah-lembut, dan sangat menghormati orang tua. Itulah cermin budaya masyarakat Sunda.
Penjelasan:
semoga membantuuu
10. 6.Hitunglah nilai Modulo berikut :a. 555 mod 12b. 435 mod -16C. -755 mod 13d. -855 mod -14bisa bantu saya teman2 jawabnya
[tex]\text{Nilai modulo dari} \\ \\ a. \: \: 555 \: \: \text{mod} \: 12 \equiv 3 \: \: \text{mod} \: 12 \\ \\ b. \: \: 435 \: \: \text{mod} \: (- 16) \equiv 3 \: \: \text{mod} \: ( - 16) \\ \\ c. \: \: ( - 755)\: \: \text{mod} \: 13 \equiv 12 \: \: \text{mod} \: 13 \\ \\ d. \: \: ( - 855)\: \: \text{mod} \: ( - 14) \equiv 13 \: \: \text{mod} \: ( - 14) \\ \\ [/tex]
PembahasanModulo adalah pembagian bilangan atau ekspresi aljabar yang menghasilkan sisa.
Contoh :
[tex]\boxed{(ax + b) \: \: \text{mod} \: \: a \: \equiv \: b \: \: \text{mod} \: \: a} \\ \\ [/tex]
Diketahui :
[tex]a. \: \: 555 \: \: \text{mod} \: 12 \\ \\ b. \: \: 435 \: \: \text{mod} \: (- 16) \\ \\ c. \: \: ( - 755)\: \: \text{mod} \: 13 \\ \\ d. \: \: ( - 855)\: \: \text{mod} \: ( - 14) \\ \\ [/tex]
Ditanya :
[tex]\text{Nilai modulo dari} \\ \\ a. \: \: 555 \: \: \text{mod} \: 12 \\ \\ b. \: \: 435 \: \: \text{mod} \: (- 16) \\ \\ c. \: \: ( - 755)\: \: \text{mod} \: 13 \\ \\ d. \: \: ( - 855)\: \: \text{mod} \: ( - 14) \\ \\ [/tex]
Jawab :
[tex]a. \\ \\ \: \: \: \: \: 555 \: \: \text{mod} \: 12 \\ \\ \equiv (46 \times 12) + 3 \: \: \text{mod} \: 12 \\ \\ \equiv 3 \: \: \text{mod} \: 12 \\ \\ [/tex]
[tex]b. \\ \\ 435 \: \: \text{mod} \: (- 16) \\ \\ \equiv ( - 16 \times - 27) + 3 \: \: \text{mod} \: ( - 16) \\ \\ \equiv 3 \: \: \text{mod} \: ( - 16) \\ \\ [/tex]
[tex]c. \\ \\ ( - 755)\: \: \text{mod} \: 13 \\ \\ \equiv ( 13 \times - 58) + (- 1) \: \: \text{mod} \: 13 \\ \\ \equiv ( - 1) \: \: \text{mod} \: 13 \\ \\ \equiv (13 - 1) \: \: \text{mod} \: 13 \\ \\ \equiv 12 \: \: \text{mod} \: 13 \\ \\ [/tex]
[tex]d. \\ \\ ( - 855)\: \: \text{mod} \: ( - 14) \\ \\ \equiv ( - 14 \times 61) + (- 1) \: \: \text{mod} \: ( - 14) \\ \\ \equiv ( - 1) \: \: \text{mod} \: ( - 14) \\ \\ \equiv ( - 14 + 13) \: \: \text{mod} \: ( - 14) \\ \\ \equiv ( - 14 \times 1 + 13) \: \: \text{mod} \: ( - 14) \\ \\ \equiv 13 \: \: \text{mod} \: ( - 14) \\ \\ [/tex]
Kesimpulan :
[tex]\text{Nilai modulo dari} \\ \\ a. \: \: 555 \: \: \text{mod} \: 12 \equiv 3 \: \: \text{mod} \: 12 \\ \\ b. \: \: 435 \: \: \text{mod} \: (- 16) \equiv 3 \: \: \text{mod} \: ( - 16) \\ \\ c. \: \: ( - 755)\: \: \text{mod} \: 13 \equiv 12 \: \: \text{mod} \: 13 \\ \\ d. \: \: ( - 855)\: \: \text{mod} \: ( - 14) \equiv 13 \: \: \text{mod} \: ( - 14) \\ \\ [/tex]
Pelajari Lebih LanjutContoh soal lain tentang bilangan bulat
Nilai terkecil dari a – b
brainly.co.id/tugas/3358718
Bilangan bulat yang lebih besar
brainly.co.id/tugas/368990
Diketahui bilangan A dan B bilangan bulat positif. Bilangan A dan B sama sama tersusun dari 4 angka
brainly.co.id/tugas/286374
------------------------------------------------
Detail JawabanKelas : 7
Mapel : Matematika
Kategori : Bilangan
Kode Kategorisasi : 7.2.2
Kata Kunci : pembagian, modulo, sisa
11. jika p=2q (mod 24),maka p=2q (mod 8)
Jawaban:
2q mod 8
2q :8
q=4 mod 8
=2
maka hasilnya adalah 2
12. saya dulu adalah pengguna w.a mod, tetapi ada beberapa alasan yang membuat saya sekarang ingin mendownload w.a ori. saya sudah menghapus aplikasi w.a mod, file² yang berhubungan dengan w.a mod-nya. tetapi saat saya ingin mendowload w.a ori di playstore tiba2 muncul notifikasi seperti ini. apakah kaka² yang pintar bisa memberitahu saya cara agar saya bisa mendownload w.a yang ori???mohon bantuan jawabannnya kaka² yang pintar, karena aplikasi ini sangat penting untuk saya berkomunikasi
Jawaban:
itu berarti file wa mod masih ada di file hp nya
Penjelasan:
coba download zarciver cari wa coba
13. 4.hitunglah:a. 187 x = 2 (mod 503)b. 103 x = 444 (mod 999)c. 128 x = 833 (mod 1001)d. 980 x = 1500 (mod 1600)e. 1923 x = 201 (mod 519)
Jawaban:
jawabannya C. 128 x 833 (mod 1600)
14. Buktikan bahwa jika a= 10 (mod 30), maka 3a = 7 (mod 10)
Jawaban:
[tex]256 - 62 - 12 + 22 \times 62 = 3822[/tex]
15. 1. Operasi berikut yang menghasilkan nilai 2 adalaha. 4 < 22b. 4 Mod 22c. 22 Mod 4d. 10 Mod 2e. 10 Mod 5
Jawaban : c. 22 Mod 4Pembahasan
Karena saat 22 dibagi 4, angka yang dikalikan 4 menghasilkan bilangan mendekati 22 adalah angka 5 yang menghasilkan bilangan 20 (4×5=20) sehingga sisa dari angka 22 adalah 2 (22-20 = 2)
Catatan tambahanSimbol modulus (Mod) = %
16. 18^-1 mod 23= 20^-1 mod 29= 27^25 mod 53= Tolonglah
Akan dicari nilai-nilai dari:
a. 18⁻¹ mod 23
b. 20⁻¹ mod 29
c. 27²⁵ mod 53
Pembahasan:
Modulo adalah suatu operasi matematika yang didefinisikan sebagai berikut.
Diberikan dua bilangan a dan b. a modulo b adalah bilangan bulat sisa pembagian a oleh b.
Sebelum menyelesaikan soal yang diberikan, untuk poin a dan b apakah benar pangkat yang diberikan adalah -1? Biasanya pangkat yang digunakan adalah pangkat bilangan bulat positif.
Misalkan saya asumsikan yang ditanyakan adalah pangkat 1, maka:
a. 18¹ = 18, 18 : 23 = 0 sisa 18.
Jadi, 18¹ mod 23 = 18
b. 20¹ = 20, 20 : 29 = 0 sisa 20.
Jadi, 20¹ mod 29 = 20
c. 27²⁵ mod 53
27⁵ = 14.348.907,
14.348.907 : 53 = 270.734 sisa 5,
sehingga 27⁵ mood 53 = 5.
27²⁵ = (27⁵)⁵
Karena 27⁵ : 53 bersisa 5, maka 27²⁵ : 53 juga akan bersisa 5.
Akibatnya, 27²⁵ mod 53 = 5
17. kuis kata dari bahasa:zoom: zoom:mod:mod
zoom
4!/2
= 4×3×2 / 2
= 24/2
= 12 susunan
zoom4!/2
= 4×3×2 / 2
= 24/2
= 12 susunan
mod3!
= 3×2
= 6 susunan
mod3!
= 3×2
= 6 susunan
Jawaban:
1. ZOOM
Z = 1
O = 1
O = 1
M = 1
HURUF : 4
UNSUR GANDA : -
4×3×2×1
24 susunan kata
2. zoom
24 susunan kata
3. mod
m = 1
o = 1
d = 1
huruf = 3
unsur ganda = 1!/2!
3×2×1
6 sussunan kata
4. mod
6 sussunan kata
( koreksi ya kk )
18. Kuis +50: Liat gambar, lalu tentukan nilai 14 mod 9 6 mod 2 10 mod 3
14 mod 9
1
_____
9 ) 14
9
____ -
5
14 mod 9 = 5
6 mod 23
_____
2 ) 6
6
_____ -
0
6 mod 2 = 0
10 mod 33
______
3 ) 10
9
_____ -
1
10 mod 3 = 1
14 mod 9 = 5
10 mod 3 = 1
ditunggu koreksinya
.
.
.
[tex]{\colorbox{darkgray}{\colorbox{black}{\sf{\color{66FFFF}{lonermaπ}}}}}[/tex]
19. (7 pangkat 7.777.777 mod 100) + (5 pangkat 5.555.555 mod 10)
[tex]7^1=7[/tex] angka satuannya 7
[tex]7^2=49[/tex] angka satuannya 9
[tex]7^3=343[/tex] angka satuannya 3
[tex]7^4=2401[/tex] angka satuannya 1
[tex]7^5=16807[/tex] angka satuannya 7
Sehingga bilangan berpangkat dengan bilangan pokok 7 akan memiliki digit satuan yang berulang dengan periode 4.
[tex]5^1=5[/tex] angka satuannya 5
[tex]5^2=25[/tex] angka satuannya 5
[tex]5^3=125[/tex] angka satuannya 5
Sehingga bilangan berpanngkat dengan bilangan pokok 5 akan memiliki digit satuan 5.
Dengan demikian:
[tex]7^{7.777.777}mod100+5^{5.555.555}mod10[/tex]
[tex]=7^{4*(1.944.444)+1}mod100+(5)^{5.555.555}mod10[/tex]
[tex]=[(7^4)^{1.944.444}.7^1]mod100+(....5)mod10[/tex]
[tex]=[(2401)^{1.944.444}.7]mod100+(...5)mod10[/tex]
[tex]=(...01).7mod100+5mod10[/tex]
[tex]=(...07)mod100+5mod10[/tex]
[tex]=7mod100+5mod10[/tex]
[tex]=7mod100+25mod100[/tex]
[tex]=32mod100[/tex]
20. KoeissMod²⁰⁰ ÷ Mod¹⁵⁶ × Mod¹³⁴ = ....Nt : Ada yg mo minat jadi mod g?
Mod²⁰⁰ ÷ Mod¹⁵⁶ × Mod¹³⁴
= Mod(²⁰⁰-¹⁵⁶+¹³⁴)
= Mod(⁴⁴+¹³⁴)
= Mod¹⁷⁸
[tex] \tt \: mod {}^{200} \div mod {}^{156} \times mod {}^{134} [/tex]
[tex] \tt \: mod {}^{200} \times mod {}^{ - 156} \times mod {}^{134} [/tex]
[tex] \tt \: mod {}^{(200 - 156 + 134)} [/tex]
[tex] \tt \: mod {}^{44 + 134} [/tex]
[tex] \tt \: mod {}^{178} [/tex]
21. Tentukan hasil dari :a. -83 mod 16b. 14 mod 65c. 157 mod 23Bantu jawab
-83 mod 16 = -3
14 mod 65 = -5
157 mod 23 = 19
22. 1. Periksalah kebenaran pernyataan ini, 3 = 35 mod 4 !2. Periksalah kebenaran pernyataan ini 1 = 36 mod 5 !3. Hitunglah 100144 mod 25 !4. Berapa hasil 5! mod 17 ?5. Hitnglah 3⁴ mod 5 !
Nomor 1 dapat kita buktikan dengan cara mencari nilai sisa pembagian 35 dengan 4. Kita kalikan 4 dengan 8 sehingga hasilnya adalah 32, maka sisa yang kita dapati adalah 35 - 32 = 3. Kita telah membuktikan bahwa
[tex] 3 \equiv 35 \pmod 4 [/tex]
Pernyataan tersebut benar.
Nomor 2 juga sama. Agar hasil perkalian 5 mendekati 36, maka 5 harus dikalikan dengan 7 sehingga hasilnya adalah 35. Maka, sisa pembagiannya adalah 36 - 35 = 1. Jadi,
[tex] 1 \equiv 36 \pmod 5 [/tex]
Untuk nomor 3, kita hanya mencari perkalian yang mendekati 25 (Anggap seperti ketika kita menghitung hasil bagi 100144 dengan 25). Namun, saya akan menggunakan cara ini. Ini bisa kita tulis
[tex] 100144 \pmod {25} [/tex]
sebagai
[tex] 144 \pmod {25} [/tex]
Agar mendekati 144, maka bilangan dari kelipatan dari 25 yang mungkin adalah 125. Jadi, 144 - 125 = 19. Jadi,
[tex] 19 \equiv 100144 \pmod {25} [/tex]
Hal yang serupa untuk nomor 4.
[tex] 5! [/tex] adalah 120. Jadi, dapat kita tulis
[tex] 120 \pmod {17} [/tex]
Agar mendekati 120, maka bilangan dari kelipatan 17 yang mungkin adalah 119, sehingga [tex] 120 - 119 = 1 [/tex]. Jadi,
[tex] 1 \equiv 5! \pmod {17} [/tex]
Nomor 5 juga sama. Karena [tex] 3^4 = 81 [/tex], maka kita tulis
[tex] 81 \pmod 5 [/tex]
Sudah jelas bahwa bilangan dari kelipatan 5 adalah 80. Jadi,
[tex] 1 \equiv 81 \pmod 5 [/tex]
Cabang matematika yang dipelajari:
Teori bilangan23. 1.2014^2014 mod 92.2021^2021 mod 9
Jawab:
1. 7
2. 2
Penjelasan dengan langkah-langkah:
karena mod itu hasil bagi yang tesisa
24. Modulus (singkatnya mod) adalah sisa dari sebuah divisi. Contoh: 9 mod 4 adalah1. Berapakah 7 450 mod 100?
Jawaban:
49
Penjelasan:
= 7^(450) mod 100
= 7^3^(150) mod 100
= (343)^150 mod 100
= 43^150 mod 100
= 43^2^(75) mod 100
= 1849^75 mod 100
= 49^75 mod 100
= 49^(2 . 37 + 1) mod 100
= 49^2^(37) . 49 mod 100
= 2401^37 . 49 mod 100
= 1^37 . 49 mod 100
= 49 mod 100
25. Jika a = b (mod m) dan c = (mod m) buktikan bahwa adk=bck (mod m), untuk setiap bilangan k
Penjelasan dengan langkah-langkah:
a = b (mod m)
a = mp + b, untuk suatu bilangan bulat p
c = d (mod m)
c = mq + d, untuk suatu bilangan bulat p
d = c - mq
adk = (mp + b)(c - mq)k
= (mpc + bc - m²pq - bmq)k
= mpck + bck -m²pqk - bmqk
= mpck - m²pqk - bmqk + bck
= m(pck - mpqk - bqk) + bck
= bck (mod m)
26. TENTUKAN BANYAK SUSUNAN KATA DARI-PAKETAN-HAMPIR-HABISNOTE : PAKETANKU HAMPIR HABIS GARA GARA DOWNLOAD FNF DUSTALE MOD
[tex]\huge{\pink{\boxed{ MATEMATIKA}}}[/tex]
Penjelasan dengan langkah-langkah:
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
[tex]\huge{\pink{\mathfrak{ Soal}}}[/tex]
1. ) Tentukan Banyak Susunan Dari Kata :
Paketan Hampir Habis■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
[tex]\huge{\pink{\mathfrak{ Jawaban}}}[/tex]
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
□■□■□■□■□■□■□■□■□■□■□■□■□
Nomer 1 : Paketan Banyak Huruf = 7! Unsur Ganda = a ( 2 ) ====================================P = n! / k!
P = 7! / 2!
P = 7.6.5.4.3.2.1 / 2.1
P = 5.040 / 2
P = 2.520 Susunan ====================================□■□■□■□■□■□■□■□■□■□■□■□■□
Nomer 2 : Hampir Banyak Huruf = 6! Unsur Ganda = - ====================================P = n!
P = 6!
P = 6.5.4.3.2.1
P = 720 Susunan ====================================□■□■□■□■□■□■□■□■□■□■□■□■□
Nomer 3 : Habis Banyak Huruf = 5! Unsur Ganda = - ====================================P = n!
P = 5!
P = 5.4.3.2.1
P = 120 Susunan ====================================□■□■□■□■□■□■□■□■□■□■□■□■□
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
[tex]\pink{\huge\boxed{\fcolorbox{pink}{aqua}{ Otayigusgik46}}}[/tex]
♧♧♧♧♧♧♧♧♧♧♧♧♧♧♧♧DETAIL JAWABANMapel = Matematika Kelas = 12 Kode Kategorisasi = 12.7.2Kata Kunci = Permutasi Kata ♧♧♧♧♧♧♧♧♧♧♧♧♧♧♧♧#CMIIW
Penjelasan dengan langkah-langkah:
1.
P = 1
A = 2
K = 1
E = 1
T = 1
N = 1
Jumlah Huruf = 7
[tex] = \: \frac{7!}{2!} [/tex]
[tex] = \: \frac{7 \: \times \: 6 \: \times \: 5 \: \times \: 4 \: \times \: 3 \: \times \: \cancel{2!}}{ \cancel{2!}} [/tex]
= 7 x 6 x 5 x 4 x 3
= 2.520 Susunan
2.
H = 1
A = 1
M = 1
P = 1
I = 1
R = 1
Jumlah Huruf = 6
= 6!
= 6 x 5 x 4 x 3 x 2 x 1
= 720 Susunan
3.
H = 1
A = 1
B = 1
I = 1
S = 1
Jumlah Huruf = 5
= 5!
= 5 x 4 x 3 x 2 x 1
= 120 Susunan
27. 2²⁰²⁰ mod 10 + 7²⁰²¹ mod 10 adalah...
2²⁰²⁰ mod 10 bisa dikategorikan sebagai, "berapa digit terakhir dari 2²⁰²⁰", layaknya 7²⁰²¹ mod 10.
2²⁰²⁰ memiliki pola, yaitu, {2, 4, 8, 6, 2, 4, 8, 6, ....}
Jika kita lihat dari 2020, dia itu habis dibagi 4, sehingga posisinya adalah ke-0 atau yang ke-4, 6.
7²⁰²¹ memiliki pola juga, yaitu {7, 9, 3, 1, 7, 9, 3, 1, ....}
2021 dibagi 4 bersisa 1 sehingga digit yang ke satu, 7.
6 + 7 = 13
Jawaban: 13
28. Kuis +50: 26 mod 5 = ...... 20 mod 3 = ...... 45 mod 7 = ......
26 mod 5
____
5 ) 26 = 5
25
____-
1
26 mod 5 = 120 mod 3______
3 ) 20 = 6
18
_____-
2
20 mod 3 = 245 mod 7______
7 ) 45 = 6
42
_____-
3
45 mod 7 = 3Penjelasan dengan langkah-langkah:
semoga bermanfaat untuk kita semua
answer: Amongus08
29. 18^-1 mod 23= 20^-1 mod 29= 27^25 mod 53= Tulis caranya
Akan dicari
nilai-nilai dari:
a. 18⁻¹ mod 23
b. 20⁻¹
mod 29
c. 27²⁵
mod 53
Pembahasan:
Modulo adalah suatu operasi matematika yang didefinisikan sebagai berikut.
Diberikan dua bilangan a dan b. a modulo b adalah bilangan bulat sisa pembagian
a oleh b.
Sebelum menyelesaikan soal yang diberikan, untuk poin a dan b apakah benar
pangkat yang diberikan adalah -1? Biasanya pangkat yang digunakan adalah
pangkat bilangan bulat positif.
Misalkan saya asumsikan yang ditanyakan adalah pangkat 1, maka:
a. 18¹ = 18, 18 : 23 = 0 sisa 18.
Jadi, 18¹ mod 23 = 18
b. 20¹ = 20, 20 : 29 = 0 sisa 20.
Jadi, 20¹ mod 29 = 20
c. 27²⁵ mod 53
27⁵ = 14.348.907,
14.348.907 : 53 = 270.734 sisa 5,
sehingga 27⁵ mood 53 = 5.
27²⁵ = (27⁵)⁵
Karena 27⁵ : 53 bersisa 5, maka 27²⁵ : 53 juga akan bersisa 5.
Akibatnya, 27²⁵ mod 53 = 5
30. Tentukan balikan modulo dari 3 (mod 9), 15 (mod 7), dan 17 (mod 8)
Untuk menentukan balikan modulo dari sebuah bilangan, kita harus mencari bilangan lain yang jika dikalikan dengan bilangan tersebut akan menghasilkan 1 ketika dibagi dengan modulnya.
Balikan modulo dari 3 (mod 9) adalah 4, karena 3 x 4 = 12, dan 12 % 9 = 3.
Balikan modulo dari 15 (mod 7) adalah 6, karena 15 x 6 = 90, dan 90 % 7 = 6.
Balikan modulo dari 17 (mod 8) adalah 7, karena 17 x 7 = 119, dan 119 % 8 = 7.
Jadi, balikan modulo dari 3 (mod 9), 15 (mod 7), dan 17 (mod 8) adalah 4, 6, dan 7, masing-masing.